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structed the heated inlet assembly, and to Professors P. Kebarle 
and R. W. Taft for helpful discussions and providing the gas-
phase basicities, respectively. 
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Intramolecular 1,1-Cycloaddition Reactions of 
Diazomethanes to C = C Double Bonds1 

Sir: 

Recently, Padwa2 and Steglich3 reported that both photo-
chemically2 and thermally3 generated 2-allyl-substituted nitrile 
ylides underwent a carbene-type intramolecular 1,1 cycload-
dition to give 2-azabicyclo[3.1.0]hex-2-enes. In connection 
with those findings and our recent report4 on a novel cyclization 
of allyldiazomethane derivative derived from thermal de­
composition of the sodium salt of a-(l,3,5-cycloheptatrien-
3-yl)acetophenone to 10-phenyl-l,l 1-diazatricyclo-
[6.3.0.04'6]undeca-2,8,10-triene, it was of interest to explore 
the generality of intramolecular cyclizations of 2-allyl-sub­
stituted diazomethanes in which steric restrictions oppose the 
parallel-plane approach which gives normal 1,3-dipolar ad-
ducts, 2,3-diazabicyclo[3.1.0]hex-2-enes. Herein we report 
our first observation of a formal nitrene-type 1,1 cycloaddition 
of 2-allyl-substituted diazomethanes A leading to 1,2-diaza-
bicyclo[3.1.0]hex-2-enes B. 
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Decomposition of the sodium salt of tosylhydrazone la (mp 
123 0 C) 7 in refluxing carbon tetrachloride immediately de­
veloped a red coloration which gradually faded during re-
fluxing. Upon cooling to room temperature the color faded 
completely and 3a (mp91 0C) was isolated in 73% yield. The 
structure of 3a was unequivocally determined by its spectral 
properties: m/e (rel intensity) 198 (M + , 62), 170 (45), 169 
(35), 155 (52), 142 (90), 141 (100); ^ x

r 3040, 2950, 1560, 
1495, 1445, 760, 690 cm"1; A^a°x

H 253.4 nm (log t 4.09); 1H 
NMR (<5 units in toluene-^), 1.2~2.2 (m, 7 H), 2.72 (d, 1 H, 
J= 17.3 Hz), 2.91 (d, 1 H, J = 17.3 Hz), 7.0~7.2 (m, 3 H), 
7.6~7.8 (m, 2 H). Similarly, decomposition of lb (mp 127 0C) 
and Ic (mp 120 0C) under the same conditions gave the cor­
responding aziridines 3b (mp 71.5 0 C) 8 and 3c (mp 65~67 
0 C) 9 in 72 and 86% yields, respectively. Dihydronaphthalene 
derivative 6 (mp 138 0C) also afforded a quantitative yield of 
the air-sensitive 8.10 The isomer 9 (mp 159 0 C dec), on the 
other hand, afforded in quantitative yield 10," which was 
found, however, to cyclize slowly to 11 (mp93.5~95 0 C) 1 2 in 
50% yield when allowed to stand at —23 0 C. 

(cH€nc ir ( c 0 n f 5^ ( C HSXX 
1 2 3 

a : n=1 

" = n = 2 ^ - | A ^ H R=C6H5 

c :n = 3 (CHj)1JI H . . J j « (CH2̂ JJ E . l N E=C02CH3 

4 5 

9rr ?xx" 6^" S^ 
6 X = NNHTs 8 9 X = NNHTS 11 

7 X = N+=N" 1Ox = N+=N" 

The generation of diazomethanes as intermediates in the 
formation of aziridines was substantiated in the case of 2c l 3 

by the formation of the usual 1,3-dipolar adducts,14 4c (58%) 
and 5c (18%), and suppression of the yield of 3c (20%) when Ic 
was decomposed in the presence of dimethyl fumarate. Also, 
the reversibility of the 1,1 cycloaddition between diazo­
methanes and aziridines was directly observed by tempera­
ture-dependent 1 H N M R analyses of these aziridines.'5 Thus, 
upon heating a solution of 3a in toluene-ds at 101 0 C for 10 
min in the probe or 3b at 85 0 C, new absorptions appeared due 
to 2a and 2b both in the 1H NMR 1 6 and IR (Cax 2040 cm"1) 
spectra, indicating the formation of the following mixtures, 
respectively: 2a (13%) and 3a (87%) and 2b (24%) and 3b 
(76%). The absorptions due to 2a and 2b disappeared upon 
cooling to room temperature, cleanly reproducing the spectra 
of 3a and 3b. Separate heating of a mixture of 7 (9%) and 8 
(91%) at 30 or at 90 0 C for 10 min in carbon tetrachloride gave 
mixtures composed, respectively, of 13% 7 and 87% 8 at 30 °C 
and 50% 7 and 50% 8 at 90 0C. The latter mixture, when cooled 
to 30 0 C, gave nearly the same composition (10% 7 and 90% 
8) as the starting one. Diazomethane 10, on the other hand, 
cyclized rather slowly to 11; a mixture composed of 10 (74%) 
and 11 (26%) obtained by heating of 11 at 80 0 C for 10 min 
slowly changed its composition to 45% 10 and 55% 11 after 30 
days at room temperature. During the above 1H NMR anal­
yses, neither an intermediate such as a 2,3-di-
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azabicyclo[3.1.0]hex-2-ene derivative nor a side reaction such 
as nitrogen extrusion was observed. 

The above experimental evidence clearly indicates that az-
iridine formation, which has been proved by Huisgen17 not to 
occur during intermolecular 1,3-dipolar cycloaddition reac­
tions of diazomethanes and olefins, can take place intramo­
lecular!}'. Since MO calculations18 show that the contribution 
of a nitrene-like structure of the terminal nitrogen of diazo-
methane in its ground state is unimportant, a 1,1 cycloaddition 
through a nitrene form seems unfeasible. Plausible mechanistic 
alternatives, which are yet open without detailed stereo­
chemical studies,19 however, involve reactions of a linear di-
azomethane either via a stepwise pathway to form "a six-
membered dipole C"20 or via a concerted cheletropic path­
way.22 Nevertheless, the results described here provide a novel 
example of the intramolecular reactivity of 2-allyl-substituted 
diazomethanes and also provide a useful synthesis of 1,2-di-
azabicyclo[3.1.0]hex-2-enes. Details of stereochemical studies 
will be reported soon. 
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Comment on the Electronic Structure of 
HAlOH and H2O-Al 

Sir: 

The interaction of ground- and excited-state metal atoms 
with water molecules has attracted considerable experimen­
tal '~5 and theoretical6 interest. Matrix isolation studies by 
Grandsden and co-workers' indicate that aluminum interacts 
with water to yield the metal hydroxyhydride. Oblath and 
GoIe2 have suggested that emission from excited HAlOH may 
be responsible for the continuum resulting from the reaction 
of Al with H2O in the gas phase. In this communication we 
present the results of theoretical calculations which suggest 
that insertion of Al into H2O to yield HAlOH is exothermic 
by ^38 kcal/mol. Moreover, we find that there exist reaction 
paths leading to the HAlOH which are fully attractive, i.e., 
without a barrier. 

To find the lowest energy structures of HAlOH and C2r 
H2O-Al, we have employed the spin-unrestricted Hartree-
Fock approximation, together with the effective core potential 
procedure7 for aluminum. In this procedure only the valence 
(3s and 3p) electrons of the aluminum atom are treated ex­
plicitly, the inner core being modeled by an effective potential. 
This greatly reduces the cost of the calculations. The 3s/4p 
basis set of Topiol et al.7 was employed for aluminum, while 
Dunning's8 double f basis sets were employed for hydrogen and 
and oxygen. We have repeated the calculations at the opti­
mized geometries for HAlOH and the Cu- H2O-Al adduct, 
treating all the electrons explicitly and employing the alumi­
num basis set of Trenary et al.6 The comparison of the all-
electron and effective core potential results is especially im­
portant since core potentials are being increasingly applied to 
the study of complicated molecules. 

The 2B2 state of the C2,- H2O-Al has been previously treated 
at the SCF level by Trenary et al. who found an equilibrium 
Al-O separation of 2.55 A, corresponding to a dissociation 
energy (to Al + H2O) of 4.4 kcal/mol. In the present study, 
the optimized C2t geometry has an Al-O separation of 2.12 
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